Small Business Innovation Research/Small Business Tech Transfer

Radiation Hard Multichannel AlN/GaN HEMT for High Efficiency Xand Ka-Band Power Amplifiers, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

This project is directed to the development of low-loss, high power-density Aluminum Nitride (AIN)/Gallium Nitride (GaN) heterostructure based transistors for enabling high-efficiency solid state power amplifiers (SSPA) needed for advancing capabilities of future robotic and human exploration spacecraft. The AIN/GaN heterostructure is a particularly attractive system for switch-mode applications due to the extremely high charge density, high electron mobility, high intrinsic breakdown field, and physical thinness achievable and has seen widespread investigation toward solid-state amplifiers in the recent years. However, very few innovations have been proposed with this heterostructure despite its expansive capacity for various creative device concepts. A new patent-pending multichannel AIN/GaN Field Screening High Electron Mobility Transistor (FS-HEMT) design is described. Preliminary experimental results are presented validating design principles that will eliminate current collapse phenomenon at X- and Ka-band frequencies that has plagues traditional HEMT designs and will ultimately deliver a low-loss switch-mode device.

Primary U.S. Work Locations and Key Partners

Radiation Hard Multichannel AlN/GaN HEMT for High Efficiency X- and Ka-Band Power Amplifiers Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Radiation Hard Multichannel AlN/GaN HEMT for High Efficiency Xand Ka-Band Power Amplifiers, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Agnitron Technology	Lead Organization	Industry	Eden Prairie, Minnesota
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations	
California	Minnesota

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137421)

Images

Project Image

Radiation Hard Multichannel AIN/GaN HEMT for High Efficiency X- and Ka-Band Power Amplifiers Project Image (https://techport.nasa.gov/imag e/129882)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Agnitron Technology

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Andrei Osinsky

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Radiation Hard Multichannel AlN/GaN HEMT for High Efficiency Xand Ka-Band Power Amplifiers, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

